纳米科技与材料应用于制冷领域的较新进展主要有: 1.纳米粒子能够显着地增大液体的导热系数(如果在水中添加5vol%的铜纳米粒子,可以使导热系数增加1.5倍)。 2.用纳米粒子对空调器换热器外表面做渗透处理,可催化分解空气中的苯、甲醛等有害物质,而且分解率接近**,从而起到杀菌消毒的效果。 由于晶粒较细,处于晶界和晶粒内缺陷中心的原子及其本身具有的**尺寸效应、小尺寸效应、表面效应和宏观**隧道效应等使纳米材料在润滑与摩擦学方面具有特殊的降摩减摩和高复合能力。纳米物质在摩擦表面以纳米颗粒或纳米膜的形式存在,具有良好的润滑性能和减摩性能,在润滑中添加纳米材料制成的润滑剂可以显着地提高润滑性能和承载性能,提高产品的质量,特别适用于苛刻条件的润滑场合。 纳米添加剂: 某**的研究小组开展了纳米添加剂改善HFC类制冷剂与矿物冷冻油相溶性的研究工作,取得了很好的效果。利用纳米添加剂改善制冷剂和冷冻油的热力学性质、传热特性、流动特性,从而达到优化参数、强化传热、改善油溶性、提高压缩机**性、减少噪音等效果,将是提高制冷空调热泵设备的效率和**性的重要**手段之一。 Melendres C. A.等人用平均粒径在10~15 nm之间的MoS2纳米粒子和平均粒径在6~8 nm之间的TiO2纳米粒子作为润滑油添加剂,进行了高速往复平面机械摩擦性能实验,结果显示,n-MoS2与n-TiO2减摩性能均优于ZDDP(二硫代磷酸锌,是润滑油常用的抗磨和抗氧剂),n-MoS2在中、低负荷状态下性能优异,而n-TiO2在高负荷状态下性能**。研究显示,纳米氢氧化镍对油品抗摩性、较大无卡咬负荷及摩擦系数有影响,在500SN的基础油中加入一定量的30~80nm的氢氧化镍和分散剂,可有效提高有的抗磨性能和较压承载性能,显着降低摩擦系数。10~70nm的硼酸镧粒子,添加到润滑油中可显着地提高其抗磨性能。胶体磨的润滑机理是在基础油中添加所谓的“活性元素”,如Cl、S、P等,在摩擦副表面形成物理、化学吸附膜或发生摩擦化学反应生成低熔点、低剪切力的无机保护膜,如FeCl3、FeS、FePO4等,从而形成润滑保护,但这一过程同时不可避免地伴随着腐蚀磨损问题。而添加纳米添加剂是通过表面改性的物理、化学方法,在金属基体表面覆盖一层保护层或改变表面原子组成成分,如渗碳或表面涂层等方法,从而改变材料表面的结晶和应力状态,从而提高材料的较压和抗磨能力。 美国IUPAC和NIST等研究机构非常重视研究能够预测冷冻机油与制冷剂的混合物的相溶性和热力学性质的有效方法。特定基质的纳米介质可以激化流体的活性,为通过加入纳米粒子的方法改善矿物油与HFC工质的相溶性的可能性提供了理论支持。实验表明,加入n-TiO2(r)的矿物油ISO VG32 ML与HFC134a的相溶性良好,目前,纳米科技与材料在制冷领域的应用正在引起科学界、企业界以及一些**的高度关注。为解决已有设备的制冷剂置换问题,自2000年以来,美国海洛克地区实验室、IUPAC实验室和英国帝国化学实验室等欧美主要研究机构又相继重新开始了HFC与矿物油相溶性的研究工作。纳米材料和技术是美国地区基金会在暖通空调领域资助的惟一课题领域。同期,ASHRAE(美国采暖、制冷空调工程学会)已经将纳米材料光催化、抗菌以及基于矿物油工艺的HFC工质置换新工艺等相关研究分别作为研究主题内容纳入到其战略研究规划中。在日本,富士通空调事业部开展了纳米材料强化空调器换热器换热性能的研究。在中国,在地区自然科学基金和地方基金的资助下,北京建筑工程学院、清华大学、上海交通大学等学校也开展了在纳米科技与材料应用于制冷方面的研究。 可以预测,纳米技术与材料在制冷领域的应用,将能改善制冷产品能效、速冻等性能指标,并改进产品的制作工艺、扩展产品使用功能,例如,增加空调器的空气净化功能,冷藏冷冻器具的抗菌功能等,这将给制冷领域带来一场深刻的变化/